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ABSTRACT

Formulas are obtained for observed circulation around and contraction rate of a Doppler radar grid cell

within a surface of constant launch angle. The cell values near unresolved axisymmetric vortices vary greatly

with beam-to-flow angle. To obtain reliable standard measures of vortex strength we bilinearly interpolate

data to points on circles of specified radii concentric with circulation centers and compute the Doppler cir-

culations around and the areal contraction rates of these circles from the field of mean Doppler velocities.

These parameters are proposed for detection of strong tornadoes and mesocyclonic winds. The circulation

and mean convergence around the Union City, Oklahoma, tornado of 24 May 1973 are computed. After

doubling to compensate for the unobserved wind component, the circulation (1.13 105m2 s21) agrees with a

previous photogrammetricmeasurement. Themature tornadowas embedded in a region, 6 km in diameter, of

nearly uniform strong convergence (;5.5 3 1023 s21) without a simultaneous mesocyclone. A model of a

convergent vortex inputted to a Doppler radar emulator reproduces these results. Moving the model vortex

shows that for aWSR-88Dwith superresolution, the circulation is relatively insensitive to range and azimuth.

WSR-88D data of the 31 May 2013 El Reno storm are also analyzed. The tornado formed in a two-celled

mesocyclone with strong inflow 5 km away. In the next 8min the circulation near the axis doubled and the

areal contraction rate at 5 km increased by 50%. This signified a large probability of strong tornadoes em-

bedded in powerful storm-scale winds.

1. Introduction

Researchers first used pulsed Doppler weather radars

in the 1970s. They quickly realized that characteristic

patterns in the Doppler velocity field observed with a

single Doppler radar revealed the presence of mesocy-

clones and tornadoes (Brown et al. 1978; Burgess et al.

1993). Attention turned in the 1990s to automatic de-

tection of mesocyclones and tornadoes. Meteorologists

and automated algorithms customarily measure the

strength of a convergent vortex by the velocity dif-

ference (delta-V or DV) between the two peaks in a

characteristic velocity couplet (e.g., Mitchell et al. 1998;

Stumpf et al. 1998; Kuster et al. 2015). Closely related

parameters are the rotational velocity Vrot 5 DV/2 and

the shear SD 5 DV/D where D is the distance between

the peaks. For an unresolved vortex of given strength

these measures vary considerably with range from the

radar. More complicated parameters are the observed

or Doppler circulation Gob around a circle of specified

radius (Davies-Jones and Stumpf 1997), the Doppler

circulation of the velocity couplet GD (Davies-Jones and

Wood 2006), and the excess rotational kinetic energy

(ERKE; Donaldson and Desrochers 1990). At a single

height, the rotational kinetic energy (RKE) is propor-

tional to G2
D, and so is similar to, but more changeable

than GD. The ERKE is the RKE calculated by replacing

GD with GD 2 GM where GM is a ‘‘threshold circulation’’

associated with a minimal mesocyclone of the same

apparent radius as the observed one. If GD 2 GM is

negative, the ERKE is set to zero, which is thus the

a Emeritus.
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minimum possible value. To test the utility of ERKE

compared to GD, Davies-Jones and Wood (2006) used a

virtual Doppler radar to ‘‘observe’’ an analytical con-

tracting vortex flow (Rott 1958). They found that ERKE

remained zero during the initial spin up of the vortex

and increased very rapidly as the mesocyclone con-

tracted to a tornado. Thus, thresholding and volatility

acts to decrease the lead time of a hypothetical warning

based on ERKE compared to one based on GD.

Another approach involves estimating azimuthal

shear by fitting a least squares plane to the Doppler

velocity field in a local grid of adjacent discrete azimuths

and range bins (Mahalik et al. 2019). This method yields

the neighborhood’s mean azimuthal shear and a mean

along-azimuth shear. The data are first subjected to a

median filter, which for each 3 3 3 subset of grid points

finds the median value and assigns it to the central point.

This method was tested with a collection of analytical

vortices of various strengths and radii from 1 to 8 km as

observed with aWSR-88D simulator. Because observed

azimuthal shear is range dependent, estimates of the

rotational intensity was good only for ranges up to 90km

(probably less for the smallest vortices in the group).

The method is unsuited for estimating the strengths of

unresolved vortices because of data smoothing and use

of derivatives of Doppler velocity.

In contrast to DV and azimuthal shear, Davies-Jones

andWood (2006) found that the circulation of aDoppler

velocity signature GD provides a fairly good estimate of

the actual value for the vortex, and is relatively insen-

sitive to range, beamwidth, and stage of vortex evolu-

tion. Rapid contraction of a rotation signature with large

circulation provides indication of imminent tornado-

genesis to a weather forecaster (Kuster et al. 2015).

Circulation Gob is an important parameter for detec-

tion of potential and actual tornadoes because it is a far-

field measure of potential vortex strength and unlike the

other parameters discussed above is independent of

where the apparent velocity peaks of an unresolved

vortex happen to lie. The far field of a tornado naturally

approximates a potential vortex with constant circula-

tion because the precise flow structure of the core flow

becomes inconsequential rapidly with distance. Based

on a proposal by E. N. Rasmussen (1995, personal

communication), Davies-Jones and Stumpf (1997) tested

circulation around a circle 2 km in radius as a tornado-

detection parameter. Consider, for example, the circu-

lation around a circle centered on the axis of a Rankine

combined vortex (RCV), which crudely represents a

tornado or mesocyclone. The circulation G in the far-

field (outer potential-vortex) part of an RCV is constant

and is equal to 2p times the radius r of the circle times

the tangential velocity y around the circle. Hence a

measured circulation of 6.283 104m2 s21 around a circle

of 1500m might be indicative of an intense tornado

with a maximum tangential wind of 100m s21 at a radial

distance of 100m. Alternatively, it might be symptom-

atic of (i) a much wider and weaker vortex, which could

spin up into a powerful tornado, or (ii) multiple vortices

within the circle. A much smaller circulation around the

circle, say 6.283 103m2 s21, is enough for only a narrow

tornado. The circulation of a mesocyclone is typically

43 105m2 s21, based on a maximum tangential velocity

of 21ms21 at a radial distance of 3 km. The contraction

rate of the circle is also an important parameter in the

spinning up of vortices.

We can compute circulation around and contraction

rate of several specified circles quickly and easily from

operational Doppler radar data. The measurable radar

coordinates (r, a, b) are slant range r (arclength distance

along a stationary ray from the radar to a measurement

point), ray azimuth angle b measured clockwise from

due north, and the launch angle a (elevation angle at the

radar) of a ray. During an operational volume scan of a

WSR-88D the velocity data are recorded on a 3D grid

with the data collected sequentially along radials at

constant range-gate spacing Dr, then at successive azi-

muth angles, and finally at different elevation angles

specified by the particular volume coverage pattern

(VCP) in use. Therefore, the fastest way to detect the

presence of dangerous vortices is to determine kine-

matic quantities from the data in surfaces of revolution

of constant launch angle (hereafter a surfaces). Since a

singleDoppler radar only observes flow along the curved

beam, we can compute relevant kinematic quantities such

as circulation only partially. We will refer to the Doppler-

observed parts of circulation as Doppler circulation, and

similarly for areal contraction rate, etc.

To compute the height of data points, we account

for the bending of rays by atmospheric refraction by

assuming a standard atmospheric stratification and ray

curvature that is constant along rays but varies with the

cosine of the launch angle (Davies-Jones et al. 2019,

hereafter DJWA). This is done in DJWA for different

earths, namely, the actual Earth, an enlarged equivalent

earth on which the rays are straight, and a flat earth with

modified ray curvature. On all these earths, height above

radar level is the same function of slant range (to an

accuracy of a few meters at most) provided that the

planetary curvature minus the curvature of a ray launched

horizontally is held constant (Fig. 1).

Kinematic quantities within an a surface such as

shear, rotational velocity, convergence, and circulation,

depend on the ray curvature but not on the planetary

curvature. Over the domain of weather radar, the ray

bending is negligible under standard refraction so we
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may neglect ray curvature for the Earth. Thus, we may

assume that (r, a, b) are spherical coordinates when

computing the above kinematic quantities.

Ideally a measure of vortex intensity should be fairly

independent of the range and azimuth of the vortex from

the radar. Since the intensity of a long-track tornado

varies along its path, we determine the range depen-

dence of various vortex-strength measures using a sim-

ple analytical vortex flow and a Doppler radar simulator

(as in Davies-Jones andWood 2006). Bymoving the axis

of the vortex, we can generate the field of meanDoppler

velocities at different ranges. The analytical vortex flow

is over a flat earth so we employ the DJWA flat-earth

model, which compensates for the lack of earth curva-

ture with a precisely modified ray curvature. With this

curvature we obtain the flow as a function of radar co-

ordinates as follows. For each radar location we locate

the points (X,Y,H) in the flat-earth Cartesian geometry

corresponding to each radar grid point (ri, a, bk) on a

particular a surface.We compute the flat-earth ray slope

angle and the Doppler component of velocity at these

points. We then use the radar emulator described in

Davies-Jones and Wood (2006, 1046–1047) to compute

the mean Doppler velocity at the radar grid points.

The present paper presents a methodology for com-

puting the circulation and areal contraction rates of

vortex flows from radar observations. The proposed

methodology is applied to both actual and simulated

observations. Section 2 derives the necessary formulas.

As one example, we determine observed circulation and

contraction rate of the 1973 Union City, Oklahoma,

tornado (Brown et al. 1978) in section 3 and use a simple

vortex model together with the above radar emulator to

reproduce these observed quantities in section 4. In

section 5 we move the model vortex to investigate how

the observed circulation varies with range and azimuth.

Section 6 describes a more recent example, the 31 May

2013 El Reno, Oklahoma, tornado, observed with a

WSR-88D. The final section restates our main points.

2. Mathematical formulation

We assume that Earth’s surface is a sphere with radius

a4 (’6371km) equal to the distance from the center of

Earth to the radar and that the ray curvature k owing to

atmospheric refraction is constant along rays but varies

from ray to ray according to the cosine of the launch angle.

We useCartesian coordinates (X,Y,H) associatedwith the

tangent plane at the radar as well as the radar coordinates

(r, a, b). The origins of both systems are at the radar an-

tenna. Angles are measured in radians unless stated oth-

erwise. The position vector in the Cartesian system is

X5Xi1Yj1Hk , (1)

where i, j, and k form a right-handed orthonormal basis

with i eastward, j northward, and k upward at the radar

antenna. These constant vectors are either parallel or

normal to the tangent plane at the radar and do not

follow Earth’s surface.

The transformation X 5 T(r, a, b) to Cartesian co-

ordinates from radar coordinates is

X5S(r,a) sinb,
Y5S(r,a) cosb,
H5H(r,a), (2)

where

S(r,a)5
2

k
sin

kr

2
cos

�
a2

kr

2

�
,

H(r,a)5
2

k
sin

kr

2
sin

�
a2

kr

2

�
, (3)

FIG. 1. Graph showing the linear relationship between the cur-

vature of a ray launched horizontally and planetary curvature that

makes height above radar level the same function of slant range for

the three different earths. The ordinate is the normalized curva-

ture, a4k0, of a ray launched horizontally and the abscissa is the

normalized planetary curvature, a4/a. The earths are the actual

Earth (radius a4), an enlarged equivalent earth on which the rays

are straight, and a flat earth withmodified ray curvature. The graph

is drawn for an equivalent earth radius 1.21 times the actual Earth

radius (standard refraction). The point coordinates are (1/1.21, 0)

for the equivalent earth, (1, 1–1/1.21) for the actual Earth, and

(0,21/1.21) for the flat earth. The ray curvature is negative for the

flat Earth, signifying that the rays are concave upward in this case.
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by trigonometric identities and

k5 k
0
cosa (4)

is the ray curvature and k0 is the curvature of rays

launched at a 5 08 [see Eqs. (2)–(4) of DJWA]. For

standard refraction on the actual Earth k0 5 (5.76 a4)21.

The corresponding modified curvature for use on a flat

earth is 2(1.21 a4)21 (Fig. 1). From (3) and (4) it fol-

lows that �
S2tana/k

0

seca/k
0

�2

1

�
H1 1/k

0

seca/k
0

�2

5 1, (5)

which verifies that the stationary rays (curves of con-

stant a) are circles with centers atS5 tana/k0,H521/k0
and radii seca/k0. Note also that

R[ (S2 1H2)1/2 5
2

k
sin

kr

2
. (6)

At this point we can proceed without further approxi-

mation by regarding (r, a, b) as nonorthogonal coor-

dinates (Margenau and Murphy 1956, 192–197) and

retaining the appropriate ray curvature for the earth.

The computer program used to generate the results in

this paper in fact does just this. Alternatively, with

negligible loss of accuracy as long as the planetary

curvature is set to the equivalent-earth one (Fig. 1), we

may set the ray curvature to zero, which is equivalent to

assuming that (r, a, b) are spherical coordinates. We

use this assumption here to simplify the following

mathematical description. The formulas derived using

nonorthogonal coordinates reduce to those derived

below in the limit of vanishing ray curvature. To justify

omission of the ray curvature, we expand the trigono-

metric function in (6) into series in the small quantity

k0r (which for a long range of 225 km is equal to 0.006

for standard refraction on the actual Earth and20.03 for

the equivalent refraction on a flat earth). This yields

R

r
5

2

kr
sin

kr

2
5 12

k2
0r

2

24
cos2a1O(k4

0r
4) . (7)

The difference between the curvilinear and straight-line

slant ranges is less than 0.4 (9) meters for r 5 225 km in

the real (flat) Earth case. Therefore, for computing the

kinematic quantities in a surface of constant launch

angle we can neglect curvature over the ranges relevant

to weather radar. In contrast, an observation point’s

height above radar level is sensitive to the difference

between ray curvature and planetary curvature. Height

and ground range relative to the planetary surface and

slope angle of the ray relative to the local horizontal are

computed here as in DJWA.

The circulation G of the radar targets around a circuit

C that encloses an area A in an a surface (da 5 0) is by

definition

G5

þ
C

v � dX , (8)

and the observed circulation is

G
ob
5

þ
C

V
D
dr , (9)

where VD is the mean Doppler velocity. The mean

vorticity is the circulation divided by the area.

Circulation is calculated from the gridded mean

Doppler velocity data. The grid points in a surface of

constant launch angle are located at r 5 ri, b 5 bk,

where subscripts i and k are used to label the discrete

ranges and azimuths and ri 5 iDr. The ik grid cell is

defined as the area in the surface enclosed by successive

slant-range circles ri and ri11 and successive radials bk

and bk11.

We evaluate a general line integral

I[

þ
C

f dg (10)

in the a surface as follows. Here f and g are general

scalar variables. We define a counterclockwise sequence

of points Pm 5 [rm, a, bm] with cyclic labeling m 5 1,

2, . . . , 2M, around C. These points are either grid

points or interpolation points. If Pm is an interpolation

point, we use bilinear interpolation to obtain values

there from the gridded data. Assuming that f varies

linearly with g between adjacent points, the contribution

to the line integral from the curve segment Pm21Pm is

dI5 0:5( f
m
1 f

m21
)(g

m
2 g

m21
) . (11)

Summing all the contributions yields

I5 0:5L( f , g), (12)

where

L( f , g)[ ( f
1
g
2
2 f

2
g
1
1 f

2
g
3
2 f

3
g
2
1 � � � 1 f

2M21
g
2M

2 f
2M

g
2M21

1 f
2M

g
1
2 f

1
g
2M

) (13)

(Davies-Jones 1993). Applying (12) to (9) gives us for

the observed circulation

G
ob
5 0:5L(V

D
, r). (14)

In particular, the observed circulation around the ik

grid cell is
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dG
ob
5

Dr

2
[V

D
(r

i
,a,b

k11
)1V

D
(r

i11
,a,b

k11
)

2V
D
(r

i11
,a,b

k
)2V

D
(r

i
,a,b

k
)]. (15)

Meteorologists can detect mesocyclones from a plan

position indicator (PPI) display with the cells outlined

and the circulation values of each cell displayed. We can

easily calculate the observed circulation around a group

of cells because circulations (and line integrals in general)

are additive. The circulation around the boundary of any

area that is partitioned into subareas is equal to the sum of

the circulations around the perimeter of each subarea be-

cause the line integrals along ‘‘interior sides’’ (ones that are

shared by two of the subareas) cancel (Fig. 2; Petterssen

1956, p. 127). Note also that the observed grid cell circu-

lations near an unresolved vortex suffer from a confusing

spurious quadrupole pattern as described below.

To find a formula for areal contraction rate on an

a surface we start with a line integral for the area A,

which we find as follows. On an a-coordinate surface,

the vector surface element is

dA5 r cosadbdr u
a
, (16)

where ua is the unit vector in the direction of increasing

a. The component in the ua direction of the curl of a

continuous and differentiable vector field B is

=3B � u
a
5

1

r cosa

›B
r

›b
2

1

r

›(rB
b
)

›r
(17)

in spherical coordinates where Br and Bb are the radial

and azimuthal components of B, respectively. By choos-

ing Br 5 br cosa and Bb 5 0, we obtain an integral equal

to A, namely, ðð
A

=3B � dA5A . (18)

We then use Stokes’s theorem to obtain the line-integral

formula for area

A5

þ
C

br cosa dr , (19)

where A is positive when C is traversed counterclock-

wise. Via (12) the computational formula is

A5 0:5 cosaL(rb, r). (20)

The areal contraction rate1 is the rate2dA/dt at which

the area A is contracting materially within the a surface

and the mean convergence is the areal contraction rate

divided by the area. They are important because con-

traction stretches and amplifies the vorticity compo-

nent normal to this surface. Contraction of a circle

circumscribing a mesocyclone in an a surface would

indicate that the mesocyclone is spinning up. Note that

the contacting area is semimaterialistic because it does

not move with the flow normal to the a surface. Thus, in

the following analysis we must regard a as constant and

set the surface-normal velocity component to zero.

Applying the 2d/dt operator to (19) with the above

proviso yields

FIG. 2. The additive relationship between the circulations around

concentric circles. The larger and smaller circles have radii r2 and

r1 and areas A2 and A1, respectively. The area A2 2 A1 2 A0 is a

split annulus with a very narrow gap of areaA0. The large areaA2 is

obviously the sum of the subareas. The circulation around the

boundaries ofA1,A2,A22A12A0 andA0 are G1, G2, G22G12G0

and G0, respectively, so that the circulation around the large area is

the sum of the circulations around the subareas. In the limit as

A0 / 0, G0 / 0 (provided the vorticity is finite in A0) and the

circulation G2 around the larger circle becomes equal to the cir-

culation G1 around the smaller circle plus the circulation G2 2 G1

around the cut annulus.

1 The areal contraction rate is the negative of the areal

expansion rate.
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2
dA

dt
52

d

dt

þ
C

br cosadr

52

þ
C

b
d

dt
d(r cosadr)2

þ
C

r cosa
db

dt
dr , (21)

where r cosa(db/dt) is the azimuthal velocity component

Vb. Now

d

dt
d(r cosadr)5

dr

dt
cosadr1 r cosa

d

dt
d(dr)

5V
D
cosadr1 r cosa dV

D
5 cosad(rV

D
) .

(22)

With this result (21) becomes

2
dA

dt
52cosa

þ
C

bd(rV
D
)2

þ
C

V
b
dr

5 cosa

þ
C

rV
D
db2

þ
C

V
b
dr (23)

after integrating by parts. The terms on the right side

are, respectively, the observed and unobserved fluxes

along the a surface into A. By the line-integral method,

the observed areal contraction rate (with Vb set to

zero) is

2
dA

dt
5L(rV

D
,b) cos(a)/2 , (24)

where the functionL is defined in (13). Like circulations,

contraction rates are additive. The areal contraction rate

of a union of contiguous subareas is the sum of the areal

contraction rates of each subarea.

Except on rare occasions, a tornado is too small to be

resolved by a Doppler radar. The radar usually observes

just the circulating winds outside the vortex core where

the flow resembles a potential vortex. The Doppler

vorticity and divergence fields in this region contain

spurious ‘‘quadrupole’’ patterns (Fig. 3 and appendix)

because the radar measures just the along-beam velocity

component of this flow. The spurious quadrupole con-

tributions to the observed circulation around and con-

traction rate of a circle centered on the vortex average

out. Thus, the best choice for C on a given a surface is a

circle. Furthermore, computing the observed circulation

around a circle of radius r in the constant-a surface

provides a more precise standardized measure of cir-

culation for indicating the trend of a moving unresolved

vortex’s intensity or for comparing the strengths of dif-

ferent unresolved vortices because it is fairly insensitive

to range and azimuth. For an accurate assessment of

circulation, r should be greater than the azimuthal

spacing (in units of length) at the range of the vortex.

To construct the circle C of radius r, we first estimate

the central point (r0, a, b0) where the axis of the vortex

(mesocyclone or tornado) intersects the surface of con-

stant a and let (rc, a, bc) represent points on C. In the

spherical coordinates the circle is the intersection of the

sphere of center (r0, a, b0) and radius r with the surface

a 5 constant. The equation of this circle is

cos2a(r
c
sinb

c
2 r

0
sinb

0
)2 1 cos2a(r

c
cosb

c
2 r

0
cosb

0
)2

1 sin2a(r
c
2 r

0
)2 5 r2 . (25)

This simplifies to

4r
c
r
0
cos2a sin2 bc

2b
0

2
5 r2 2 (r

c
2 r

0
)2 (26)

after use of a trigonometric identity. Thus, the azimuths

of the circle points as a function of their slant ranges are

FIG. 3. A typical circle of radius r for which circulation and areal

contraction rate are computed. The drawing is approximate since it

assumes plane geometry. In radar coordinates (range r, azimuth b),

the radar is at (0, 0) and the centerO of the circle is at (r0, b0) where

r0 is much greater than r. The right and left points of tangency areR

and L, respectively, and N and F are the near and far points of

intersection with the circle for a ray through O. The approximate

radar coordinates of N, F, L and R are (r0 2 r, b0), (r0 1 r, b0),

[(r20 2 r2)
0:5
, b0 2Db] and [(r20 2 r2)

0:5
, b0 1Db], respectively,where

Db 5 sin21(r/r0). For an axisymmetric nondivergent vortex flow

centered on O, the Doppler velocity has a maximum at R, a min-

imum at L, and is zero at N and F. The dots around the circle in-

dicate 20 interpolation points that are equally spaced in range. In

practice we used 120 points. In terms of position around the circle,

the points bunch near R and L where tangential is directed toward

or away from the radar and spread apart near N and F where the

tangential velocity is normal to the beam. This arrangement is

beneficial for precise measurement of Doppler circulation. For an

axisymmetric convergent irrotational flow centered on O, the

Doppler velocity has a maximum atN, a minimum at F, and is zero

atR andL. For a nondivergent potential-vortex flow with axis atO

there are spurious quadrupole patterns in both the vorticity and

the divergence fields owing to only one wind component being

observed. C, AC, div, and conv respectively identify the quadrants

where the spurious cyclonic vorticity, the anticyclonic vorticity, the

divergence, and the convergence are greatest. Also shown are

(s, u), the polar coordinates with origin at O.
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b
c
5b

0
6 2 sin21

"
r2 2 (r

c
2 r

0
)2

4r
c
r
0
cos2a

#0:5

. (27)

The circle points that lie on the stationary ray through its

center are

r
c
5 r

0
6 r, b

c
5b

0
. (28)

The circle points that lie at the same slant range as the

center are

r
c
5 r

0
, b

c
5b

0
6 2 sin21 r

2r
0
cosa

. (29)

To a good approximation these points are the azimuths

of the rays that are tangents to the circle. We use (28)

and (29) to determine whether a given circle fits into the

analysis region.

To compute the observed circulation around and the

areal contraction rate of a circle C centered on a mesocy-

clone or tornadic vortex signature (TVS) in an a surface

we used the following procedure. The sequence

r
m
5 r

0
2 r1

2mr

M
, m5 0, 1, 2,:::,M , (30)

defines uniformly spaced slant ranges spanning the

spread of slant ranges across the circle [see (28) and

Fig. 3]. We use (27) to compute the azimuths b1
m and b2

m

at which the slant ranges intersect or touch the circle

(Fig. 3). At each of the points (rm, b
1
m) and (rm, b

2
m) on C

(2M points in total) we obtain the Doppler velocity VD

by locating the grid cell that the point lies in and using

bilinear interpolation. We then order the points in a

counterclockwise sequence around the circle and use

(14) and (24) to compute the observed circulation and

areal contraction rate. We can vary the radius r of the

circle through separate implementations of the algo-

rithm. Because circulation is additive, the circulation

around a larger circle is the sum of that around a smaller

concentric circle plus the circulation around the annulus

between the circles (as explained in Fig. 2). Areal con-

traction rate also has this additive property. The mean

convergence within a circle is its areal contraction rate

divided by pr2, its area.

3. Circulation and areal contraction rate of the 1973
Union City tornado

To illustrate our procedure, we analyzed data obtained

by the Norman Doppler radar at 1546 CST in the tornadic

storm that struckUnionCity on 24May 1973 (Lemon et al.

1978; Brownet al. 1978). Fromphotogrammetry byGolden

and Purcell (1978a) the maximum measured circulation of

the violent tornado was 1.05 3 105m2s21 at 200m radius

and 90m AGL. Radar detected the tornado as a TVS. We

use the field of dealiased mean Doppler velocities (relative

to theTVSmotionof 10ms21 from2838) in the 3.88 launch-
angle surface (Fig. 4; Brown et al. 1978) obtained during

the tornado’s mature stage (Golden and Purcell 1978b)

to compute the circulation around and mean diver-

gence within various circles centered between velocity

peaks (at 51 km, 292.58, 3.5 km AGL) in this a surface.

At this time and height, the peak minimum andmaximum

velocities were Vmin 5 221ms21 and Vmax 5 36ms21

with a rotational velocityVrot5 (Vmax2 Vmin)/25 28.5ms21

and a peak ratio jVminj/Vmax 50.583. Prior to this obser-

vation time the tornado had damaged only a few structures

(Davies-Jones et al. 1978) so probably the mean Doppler

velocities at 3.5km AGL arise mostly from the air motion

with only minor contributions from the centrifuged

motion of large debris, which can cause large errors in

measured convergence. The recorded data have an azi-

muthal spacing Db of 18 and the distance Dr in the radial

FIG. 4. Union City TVS (at a height of 3.5 km) on a surface of

launch angle 3.88 within field of single-Doppler mean velocities

(m s21). Weak-reflectivity data-void region is hatched (from Brown

et al. 1978). A variational technique that minimizes the gradient of

Doppler velocity assignsDoppler velocities of 2 and 5ms21 to the grid

points at (2918, 49.2 km) and (2928, 49.2 km), respectively.
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direction between grid points is 600m (four pulse depths).

The data missing at two points were filled in using a vari-

ational technique that minimizes the gradient of Doppler

velocity without modifying data at neighboring points.

The 08-launch-angle data were not used because at very

low elevations the TVSwas on the edge of the radar echo.

The field of cell circulations (Fig. 5) is characteristic of

an unresolved RCV. The circulation field has a peak at

the TVS location as expected for a concentrated cy-

clonic vortex core. Cells wholly in an irrotational outer

flow of an RCV should have no circulation. Because a

single Doppler radar does not measure the azimuthal

velocity component, the peak is surrounded by an arti-

ficial pattern of cell Doppler circulations with false

positive Doppler vorticity (cell circulation divided by

cell area2) in the far and near quadrants and false neg-

ative Doppler vorticity in the left and right quadrants

(Fig. 3 and appendix). The potential vortex also causes

an artificial skewed quadrupole pattern in the Doppler

convergence (cell contraction rate divided by cell area)

field with false Doppler divergence in the far left and

near right quadrants and false Doppler convergence in

the far right and near left quadrants (Fig. 3 and appendix).

The false Doppler vorticity and divergence satisfy an in-

verse square law (i.e., decreasewith the square of distance

from the vortex axis).

Figure 6 shows the computed circulations around

circles of various radii centered on the TVS. Results for

circles smaller than 1km in radius were unreliable be-

cause of the limited resolution of the data. The largest

circle tried in this case was 3 km in radius. The algorithm

automatically reduced its radius to 2.88 km to fit in the

domain of Fig. 4. The circulation is practically constant

for all the circles. Thus, at this time in the tornado’s life

there is no evidence for the existence of a mesocyclonic

vortex [for typical evolution see first figure in Lemon

and Doswell (1979)]. After doubling to compensate

for the unobserved wind components being set to

zero (appendix), the circulation values at 3.5km AGL

(;1.1 3 105m2 s21) compare favorably with the photo-

grammetric measurement within a few hundred meters

of the ground.Note that the circulation of a vortex is constant

along its length by Kelvin’s circulation theorem so measure-

ments at different heights should be roughly the same.

The mean convergence, 2(1/A)dA/dt, also does not

vary appreciably as the radius varies from 1 to 3 km,

indicating that the mature tornado was embedded in a re-

gion of fairly uniform strong convergence (;5.53 1023 s21

after doubling) that was around 6km in diameter (Fig. 7).

The tornado appears to be a contraction and spinup of a

FIG. 5. 3D bar chart of the cell Doppler circulations as a function

of azimuth and range for the cyclonic TVS data of Fig. 4. The

azimuths and ranges are for the cell centers and the heights or

depths of the pyramids are proportional to the magnitude of cir-

culation. A pyramid is inverted if its cell circulation is negative. The

field consists of a sharp peak at the TVS owing to the vortex core of

solid body rotation surrounded by a quadrupole pattern associated

with the outer potential vortex. The quadrupole field is positive on

the near and far sides of the TVS and negative on the left and right

sides. It is an artifice caused by measurement of only one wind

component. Since the cell areas are practically constant throughout

the diagram, a similar chart for cell vorticity is almost identical.

FIG. 6. Doppler circulation as a function of circle radius for the

Union City tornado of 24 May 1973. The circulations are around

circles centered on the TVS axis in the 3.88 surface of constant

launch angle. The blue dots mark the circulations calculated from

the observed Doppler velocity field in this surface. The red dots

show the corresponding circulations computed from the simulated

Doppler velocity field for the idealized flow depicted in Fig. 9.

2 Except at exceedingly short range, cell areas near a vortex are

locally constant.
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parent mesocyclone that existed prior to this time (Lemon

et al. 1978). For a circle concentric with the axis of an axi-

symmetric flow, the ratio of circulation to areal contraction

rate is a measure of tan x 5 2y/u where x is the inflow

angle, and u and y are the average radial and tangential

wind components, respectively, on the circle. The calcu-

lated inflow angle at various radial distances around the

Union City TVS is shown in Fig. 8. The inflow angle in-

creases progressivelywith decreasing distance fromroughly

408 at 2.5km to 808 at 1km from the TVS. This is again a

signature of a strong concentrated vortex forming in a

broad updraft. Based on insights gleamed from visual and

WSR-57 radar observations, Ward (1972) built a vortex

chamber that successively generated tornado-like vortices

within awideupdraft.Most chambers at the time featured a

small exhaust hole and narrow updraft with nearly constant

inflow angle away from the sink. As pointed out by

Ward and byDavies-Jones (1976) and confirmed by the

present results, there is no evidence for a narrow sink

flow aloft in a tornado. (The only region in a tornado

where the flow resembles a sink is in a small corner region

close to the ground where the boundary layer flow erupts

upward in a high-speed axial jet.)

4. Simulated TVS data

We simulated the Doppler velocity field that a Doppler

radar would see as it scanned an idealized vortex in a

convergent axisymmetric flow. The simulator (Davies-

Jones and Wood 2006) assumes uniform reflectivity

within a sampling volume, an effective Earth’s radius of

1.21 times the actual value, and Gaussian weighting

functions in range, azimuth (with an effective beamwidth),

and elevation (Doviak andZrnić 1993).Wehavemodified

the simulator using formulas derived herein and inDJWA

so that we can more accurately emulate observations by a

Doppler radar on a flat earth (for which we cannot use

straight rays). The virtual radar was given a half-power

beamwidth of 0.818 and a range depth of 150m to match

theNormanDoppler radar. From the first figure of Brown

et al. (2002) we deduce that the effective half-power

beamwidth is 1.358 for the above beamwidth and a 18 az-
imuthal sampling interval as used in the Union City data

collection. We applied the simulator to the Union City

tornado using a convergent RCV flow with a maximum

tangential wind 80ms21 at a radius of 220m (Fig. 9). The

corresponding circulation is 1.05 3 105m2 s21. The TVS

was located at 292.258, 51km to yield a peak ratio (0.572)

that is close to the observed one. The rotational velocity,

23.2ms21, is underestimated by 18%, indicating slightly

FIG. 7. As in Fig. 6, but for observed and simulated Doppler mean

convergence.

FIG. 8. As in Fig. 6, but for observed and simulated inflow angle

at various distances from the axis. Note the excellent agreement

between observed and simulated values.

FIG. 9. Assumed tangential-velocity (V) and radial-velocity (U)

profiles of simulated TVS.
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toomuch smoothing of the true tangential velocity profile.

The axisymmetric inflow had a similar profile to the tan-

gential wind, with maximum inflow of 8.25ms21 at 3km

and divergence of 25.5 3 1023 s21 inside 3 km and

0 outside (Fig. 9). The vertical wind was found by inte-

grating the continuity equation, using a density-scale

height of 10km.

Figures 6–8 show the simulated circulations, mean

convergences, and inflow angles for different sized

circles in the 3.88 constant-launch-angle surface.

Once again, the values of the computed circulations

and mean convergences are one-half the true values

because of the zero contributions from the unob-

served part of the wind. The similarities of the sim-

ulated curves to the observed ones in Figs. 6–8

indicate that the simulated TVS replicates the Union

City TVS well.

5. Effect of range on simulated TVS

To find out how measures of the idealized Union City

tornado (Fig. 9) would change with range and azimuth

on an operational WSR-88D, we varied the range from

25 to 225km in increments of 25 km and set the launch

angle to the lowest one in routine use, 0.58. Typical pa-
rameter values for a WSR-88D are as follows. The

beamwidth is 0.898, the range width is 274.5m and the

range-gate spacing is 250m. Under standard refraction

the centerline height of a beam launched at 0.58 in-

creases from 260m to 5.2 km in the above range interval

(Fig. 10).We do not consider ranges greater than 225 km

because the beam becomes too wide and high. For

launch angles a , 1.88 ($1.88) super (ordinary) resolu-
tion is used currently. Since we are using a5 0.58 in this

set of experiments we assumed superresolution. Super

(ordinary) resolution has an azimuthal sampling interval

(ASI) of 0.58 (18) and effective beamwidth of 1.028 (1.398);
see Brown et al. 2002. Similar toWood and Brown (1997),

we ran two series of experiments, one with the vortex axis

midway in an ASI and the other with the axis at the in-

terface between two sampling intervals. In the former

(latter) the peaks of a TVS are separated by one (two)

azimuthal sampling intervals.

Figure 11 shows the simulated rotational velocity for

the RCV of Fig. 9. Because it varies with the linear

distance between the velocity peaks in the grid, rota-

tional velocity decreases greatly with range (Fig. 11).

The data points marked by blue and red dots are for case

Mwhere the vortex axis is at the midpoint of anASI and

for case E where the axis is at an endpoint, respectively.

At moderate ranges the rotational velocity varies by

around 20% owing to location of the maximum tan-

gential winds within the ASI. In case M(E) the negative

peak and the positive peak in Doppler velocity are

separated by an odd (even) number of ASIs, respec-

tively. At all the case E data points the peaks are sepa-

rated by two intervals and the radar signatures are TVSs.

Apart from the data points at 25 and 50km, the peaks at

case M data points are separated by one interval and so

the signatures are again TVSs. At the two exceptional

points the peaks are separated by three intervals and the

signatures are thus tornado signatures (Brown et al.

2002) for different reasons. At 25 km range the angular

core diameter of the actual vortex is 18 or twice an ASI.

Thus, in case E, the peaks in Doppler velocity are found

FIG. 10. Height at the center of a beam (red curve) launched

at 0.58 elevation angle under standard refraction as function

of slant range. At each 25 km range the black vertical line

extends one-half of a half-power beamwidth (0.4558) above

(upper blue line) and below (lower blue line) the center of

the beam.
FIG. 11. Variation of rotational velocity with range for the ana-

lytical convergent vortex flow of Fig. 9 as simulated for aWSR-88D

at 0.58 launch angle with superresolution. The blue dots show the

rotational velocity of the simulated flow when the vortex axis is at

the center of an azimuthal sampling interval. The red dots depict

the rotational velocity when the vortex axis is on the interface

between two sampling intervals.
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one grid point either side of the grid point where the axis

is located. In case M where the axis is midway between

grid points, the peaks cannot be one interval from the

axis because there are no grid points there. Owing to

imperfect azimuthal resolution the apparent core di-

ameter is larger than the true one (Fig. 9.26 in Doviak

and Zrnić 1993). Thus, the peaks move farther away

from the axis to the next grid point and the signature

becomes a tornado signature (TS) as the peaks are more

than two ASI apart. At 50km range the angular core

diameter of the vortex is 0.58 so the peaks would lie at

contiguous grid points in case M if the beam were infi-

nitely narrow. Since the true angular core diameter is

now one-half the EBW (1.028), an effect, the inclusion in

the average of negative Doppler velocities at points to

the left of the axis, acts to reduce the mean Doppler

velocity at the grid point (call it 1) immediately to the

right of the axis. At the next grid point farther to the

right (say point 2) a second effect, the fact that the peak

velocity has a smaller weight in the weighted average,

acts to make the Doppler velocity smaller at 2 than at 1.

However, the first effect has the opposite impact be-

cause it is less detrimental at 2 than at 1. Thus, a TS can

arise when the first effect is larger than the second effect,

as is the case with the TS at 50 km range.

The simulated signature is slightly asymmetric owing

to the flow’s radial inflow. The peaks are at the same

range but the ratio of the negative peak to positive peak

velocity varies from 1 at very short range to around 0.78

at 225 km with most of this decline occurring at ranges

greater than 150 km (Fig. 12). This asymmetry vanishes

when the inflow is set to zero. The existence of signature

asymmetry associated with axisymmetric inflow signifies

that it is difficult to estimate the location of the axis

within a sampling interval based just on the ratio of peak

velocities. The rotational velocity seems to be unaf-

fected by the axisymmetric inflow when the velocity

peaks are at the same range.

We now demonstrate that Doppler circulation around

a circle of suitable radius is a more reliable measure of

vortex strength than rotational velocity because, over a

large span of ranges, it is relatively insensitive to range

and to the location of vortex axis within an azimuthal

sampling interval (Fig. 13) since circulation is constant

outside the core of the RCV. For example, with super-

resolution the Doppler circulation around a circle of

2.5 km radius is nearly constant for ranges up to 225 km

and is almost equal to one-half the actual circulation

of the idealized vortex (1.106 3 105m2 s21). The

range span over which the circulation around smaller

circles is almost constant is smaller in proportion to

the radius.

To estimate the range where azimuthal resolution

begins to deteriorate Doppler circulation as a measure

of vortex strength we plotted twice the Doppler circu-

lation divided by the actual circulation (the normalized

Doppler circulation) as a function of r/r for circles of

various radii r in the case where the vortex axis is at

the midpoint M of an ASI (Fig. 14). The normalized

Doppler circulation is close to its perfect value of 1 for

FIG. 12. The ratio of the negative peak to positive peak velocity

as a function of range for the analytical convergent vortex flow of

Fig. 9 as simulated for a WSR-88D at 0.58 launch angle with su-

perresolution. The blue (red) dots show the ratio when the vortex

axis is at the midpoint (endpoint) of an azimuthal sampling inter-

val. The ratio is 1 at all ranges when the convergence is set to zero.

FIG. 13. Variation of simulated Doppler circulation with

range for the idealized flow depicted in Fig. 9. The radar is a

WSR-88D with superresolution. The curves show the range

dependence of Doppler circulations around circles of various

radii centered on the TVS axis in the 0.58 launch-angle surface.

For each size circle there are two curves, M and E. The M

curves apply when the vortex axis is at the midpoint of an az-

imuthal sampling interval, and the E curves apply when the axis

is at an endpoint.
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very low values of r/r and decreases below 0.8 as r/r

surpasses 90. Thus, twice the Doppler circulation around a

circle of radius 2.5km departs less than 20% from its true

value over ranges up to 225km In the case where the

vortex axis is at an endpoint E of an ASI, the departure is

only 10% (Fig. 15). For r/r # 90 the least accurate circu-

lation occurs when the axis is at the midpoint of an ASI.

Since the circulation around a 2.5km radius circle may be

due to either a mesocyclone or a tornado, we recommend

also computing Doppler circulations around a smaller

circle of radius 1.5km for detecting possible tornadoes.

Twice theDoppler circulation around this circle departs by

20% from the true circulation at a range of 135km.

Compared to rotational velocity, circulation varies

less with position of the vortex axis within an ASI. In the

recommended range r , 90r the variation in the mea-

sured Doppler circulation owing to azimuthal location is

at most 11% (cf. Figs. 14 and 15).

With superresolution the Doppler areal contraction

rates of circles of various radii r in the 0.58 launch-angle
surface are nearly constant for ranges up to 225 km

(Fig. 16) regardless of axis location. The Doppler con-

traction rates are practically equal to one-half times the

actual convergence (5.53 1023 s21) times the circle area

A. The areal contraction rate of the convergent vortex

flow is estimated far better than the circulation for two

reasons. First, unlike vorticity, the convergence of the

model flow is constant over a large radial distance

(3 km) from the axis. Second, at all ranges greater than

30km the azimuthal grid spacing, which varies with

range, exceeds the constant range-gate spacing of 250m.

FIG. 14. The ratio of twice the Doppler circulation around the

circles divided by the actual circulation of the RCV as a function

of range r divided by circle radius r for the case when the vortex

axis at the midpoint of an azimuthal sampling volume. For the

four data series defined by r 5 1, 1.5, 2, and 2.5 km, the maxi-

mum values of r/r are 225, 150, 112.5, and 90, and the spacing in

r/r of the nine data points in each series are 25, 15, 12.5, and 10,

respectively. All the 36 data points lie on a single curve. With

perfect azimuthal resolution the ordinate should be very close to

1. Owing to decreasing azimuthal resolution, the ordinate drops

below 0.8 as r/r exceeds 90.

FIG. 15. As in Fig. 14, but for the vortex axis at an endpoint of an

azimuthal sampling volume. All 36 data points again lie on a single

curve (different from that in Fig. 14). In this case the ratio of twice

the Doppler circulation around the circles divided by the actual

circulation of the RCV is . 0.9 for r/r , 90.

FIG. 16. Variation of simulated Doppler areal contraction rate

with range for the idealized flow depicted in Fig. 9. The radar is a

WSR-88D with superresolution. The areal contraction rate

curves are for circles of various radii r centered on the vortex

axis in the 0.58 launch-angle surface and for the cases when the

axis is at the center of a sampling volume and at the interface

between two sampling volumes. Since the convergence of the

idealized flow is constant to a radius of 3 km, the true ordinate

values are 8.64r2 (r in km). The simulated ordinate values agree

closely with the true values. The areal contraction rates vary

insignificantly with range and are independent of whether the

axis is located at the midpoint or at the endpoint on an azimuthal

sampling interval.
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Thus, the Doppler convergence generally is resolved far

more finely than the Doppler vorticity.

6. Circulation and areal contraction rate of the 2013
El Reno tornado

As a second example we analyze some dealiased data

from the well observed and much studied long-lived

tornado that occurred near El Reno on 31 May 2013

(Wurman et al. 2014; Bluestein et al. 2015). Wakimoto

et al. (2016) present a detailed map of the tornado dam-

age path.Weused the data from theKOUNWSR-88Dat

two different times, 2303 UTC, which is a minute or less

after the beginning of the tornado (Kuster et al. 2015;

Seimon et al. 2016; Bluestein et al. 2019), and 2311 UTC

when the tornado was well established. A TVSwith height

continuity did not appear in the KOUN data until around

2305 UTC. The range-gate spacing is 250m and the azi-

muth increment is 0.58. The launch angles a at 2303 and

2311 UTC were 0.528 and 0.978, respectively. Figure 17

shows the radar reflectivity and Doppler velocity fields at

these times and elevation angles and circles r 5 1, 2, . . . ,

5 km centered on the signatures in the constant-a surfaces.

Relative to KOUN the center of the mesocyclone signa-

ture at 2303 UTC was situated at 296.48 azimuth, range

62 km and the central beam height was 812m above

FIG. 17. KOUN WSR-88D scans of (a) ground-relative, mean Doppler velocity VD (m s21) and (b) radar

reflectivity Z (dBZ) at a launch angle of 0.528 at 2303 UTC and (c) ground-relative, mean Doppler velocity

and (d) radar reflectivity at a launch angle of 0.978 at 2311 UTC. Black dotted curves are concentric circles of radii

r5 1, 2, 3, 4, and 5 km centered onwhite3 symbols, which are the estimated centers ofDoppler velocity signatures.

The horizontal color label bars provide the filled contours levels for Doppler velocity and reflectivity. In (a) and

(b), the height of the center is 812m AGL; in (c) and (d), the height is 1170m.
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radar level. The corresponding values for the TVS at

2311UTCwere 295.758, 55.5km, and 1170m, respectively.

The El Reno storm is at a slightly longer range that the

Union City TVS.

The steady increase of Doppler circulation from r5 1

to 3.5 km (Fig. 18) at 2303 UTC indicates a mesocyclone

with an observed circulation value of 1.7 3 105m2 s21

or 3 times the observed circulation of the Union City

tornado. At this time the negative (positive) areal con-

traction rate of circles with radii less (greater) than

2.5 km (Fig. 19) implies that the mesocyclone was a two-

celled vortex with a central downdraft (Trapp 2000).

Therefore, the tornado probably formed away from the

mesocyclone center (as in the first figure of Lemon and

Doswell 1979). The zone of positive areal contraction

rate extends from r5 2.5 km to past r5 5km. The areal

contraction rate at r5 3 km is 9 times the corresponding

Union City value. However, the Union City data were

at a higher elevation, 3.5 km, which makes comparison

between the cases of convergence-related data prob-

lematic. Clearly the outer cell of the El Reno mesocy-

clone at 2303 UTC is embedded in strongly convergent

flow. We define the average tangential velocity around

each circle, Vtang(r), as 2Gob/2pr, where the leading

factor of 2 factors in the contribution from the unobserved

wind. This variable has a flat maximum of 14.8ms21 near

r 5 2.7km (Fig. 20). Similarly, we define the average in-

flow velocity into each circle, Uin(r), as (2dA/dt)ob/pr.

The average inflow velocity increases almost linearly with

r fromnegative values (signifying outflow) in the inner cell

to strong mean inflow winds of 16ms21 at 5km (Fig. 21).

The average wind speed (U2
in 1V2

tang)
0:5

ranges from 14

to 18m s21 as r varies from 1 to 5 km (Fig. 22). The

inflow angle tan21(Vtang/Uin) decreases linearly from

1208 at r 5 1 km to 318 at r 5 5 km (Fig. 23). Values

greater than 908 signify outflow.

The corresponding circles at 2311 UTC are centered

on the TVS rather than the mesocyclone and are at a

moderately different height above radar level (1170m

instead of 812m). The circulation (Fig. 18) and the av-

erage tangential velocity (Fig. 20) at r 5 1 have both

doubled since 2303 UTC, yet the circulation is roughly

unchanged for r $ 3 km. It seems that angular mo-

mentum is being advected inward toward the rotation

axis and vertically as well as in the Davies-Jones (2008)

numerical model. The areal contraction rate (Fig. 19)

and the average inflow velocity (Fig. 21) have increased

by over 4 times at r5 3 km and by 50% at r5 5km. The

slight divergent flow at small r may be associated with

the vortex core spreading with height or with centri-

fuging of debris. The large average inflow velocities of

24m s21 at r 5 4.5–5 km (Fig. 21) indicate a surge of

high momentum air (Bluestein et al. 2015) toward the

TVS. The average windspeeds (Fig. 22) have increased

at r5 1–2 km owing to stronger tangential winds and at

FIG. 18. Doppler circulation as a function of circle radius for

the El Reno tornado of 31 May 2013. The red (blue) dots mark

the Doppler circulations centered on the mesocyclone (TVS)

axis in the 0.528 (0.978) surface of constant launch angle at

2303 (2311) UTC.

FIG. 19. As in Fig. 18, but for Doppler areal contraction rate.

FIG. 20. As in Fig. 18, but for average tangential velocity around

the circles.
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r5 4.5–5 km owing to greater radial inflow. The inflow

angle (Fig. 23) still decreases linearly with r but is less

at all r than previously. High values and large tem-

poral increases in Doppler circulation (Fig 18) and

areal contraction rate (Fig. 19) clearly reveal the twin

threats of intensifying tornadoes and strong larger-

scale winds.

7. Summary

We have derived formulas that can be used for cal-

culating the Doppler circulation around and the con-

traction rate of an area within a surface of constant

launch angle from the field of mean Doppler velocities.

Standardized measures of vortex circulation and areal

contraction rates are found by bilinearly interpolating

data to chosen points on within-surface circles of fixed

radii concentric with circulation centers. Since the

Doppler component of target velocity is the only one

observed, we can compute these quantities only par-

tially. For axisymmetric flows at ranges much greater

than the circle diameter the observed circulation around

and contraction rate of a horizontal circle concentric with

the flow are one-half the actual values. Thus, doubling the

observed values obtained from formulas herein provides

useful estimates of these quantities.

We computed the Doppler circulation and mean

convergence at a height of 3.5 km and radial distances

of 1–3 km from the 24 May 1973 Union City TVS and

found them to be practically constant. After doubling

to compensate for the unobserved wind component

being set to zero, the circulation value at 3.5 km AGL

(;1.1 3 105m2 s21) agreed closely with the photo-

grammetrically measured value near the ground. The

results indicate that the mature tornado was embed-

ded in a region of nearly uniform strong convergence

(;5.5 3 1023 s21 after doubling) that was about 6 km

in diameter without a mesocyclone present at the time.

We reproduced these results using a simple model of a

convergent vortex as input to a Doppler radar emulator.

We then moved the model vortex to show that for a

WSR-88D with superresolution the circulation around a

circle of radius 2.5 (1.5) km declines by less than 20% for

ranges up to 225 (135) km.

Wealso analyzed data collected by theKOUNWSR-88D

on the 31 May 2013 El Reno storm. At the time of tornado

formation, the analysis reveals a two-celled mesocyclone

with strong inflow at 5km from the circulation axis. Eight

minutes later the situationhadworsened considerably.Large

intensifications in circulation near the axis and in the in-

flux of momentum at the 5km radius signified greater

probability of violent tornadoes surrounded by strong

mesocyclonic and storm-scale winds.

Work still needs to be done to statistically test the

usefulness of circulation and areal expansion rate in

tornado warnings. We plan on making the observed

circulations more accurate by using Xu et al.’s (2017)

method to better position the vortex axis within an ASI.

FIG. 21. As in Fig. 18, but for average inflow velocity into

the circles.

FIG. 22. As in Fig. 18, but for average speed on the circles.

FIG. 23. As in Fig. 18, but for average inflow angle at the circles.

Values greater than 908 signify outflow.
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Wewill also evaluate the effect of noise on the simulated

circulation measurements.

Acknowledgments. Drs. Qin Xu and Jeffrey Snyder

of the National Severe Storms Laboratory (NSSL)

and the three formal reviewers provided valuable

comments. Thanks also to Mr. Charles Kuster of NSSL

for assisting with the dealiasing of the 31 May 2013

KOUN WSR-88D data.

APPENDIX

Explanations for Doubling Observed Circulation
and for Quadrupole Patterns

Here we show why the actual circulation and the areal

contraction rate are about twice the Doppler observed

values and we also reveal the origins of the spurious

quadrupole patterns in the mean Doppler velocity fields

of axisymmetric flows. For these purposes horizontal

plane geometry with Cartesian coordinates (x, y) and

orthonormal basis vectors i and j suffices. Assume

axisymmetric flow around the origin and a Doppler

radar with perfect resolution at x 5 2‘, y 5 0 so that

we do not have to calculate mean Doppler velocities

and to account for divergence of the radials. Define

polar coordinates (s, u) where x 5 s cosu and y 5
s sinu and conversely

s2 5 x2 1 y2, u5 tan21y

x
. (A1)

The velocity vector is

v5 ui1 yj5U(s)ŝ1V(s)û , (A2)

where

ŝ5 cosui1 sinuj and û52sinui1 cosuj (A3)

are the orthonormal basis vectors of the polar coordi-

nates. Here U and V are the axisymmetric flow’s radial

and tangential velocities, u is the Doppler velocity and

y is the unobserved velocity component where

u5U cosu2V sinu ,

y5U sinu1V cosu (A4)

from (A2) and (A3). The vector element of arclength

on a concentric circle C of radius r is

dx5 rduû5 (rduû � i)i1 (rduû � j)j
52r sinudui1 r cosuduj . (A5)

From (A2) and (A5) the circulation around C is

G[

þ
C

v � dx5 2pVr or

ð2p
0

(2u sinu1 y cosu)r du .

(A6)

The Doppler circulation is therefore

G
ob
52r

ð2p
0

u sinu du . (A7)

Substituting (A4) into (A7) yields

G
ob
5 r

ð2p
0

[2U(r) cosu1V(r) sinu] sinudu5prV(r) ,

(A8)

which is one-half the actual circulation around C. With

the same assumptions, the proof that the Doppler areal

contraction rate is one-half the actual areal contraction

rate is similar.

By differentiating (A4) using the chain rule, differ-

entiating (A1) to obtain ›s/›x, ›s/›x, ›u/›x, and ›u/›y,

and using trigonometric identities, we obtain for axi-

symmetric flow

2
›u

›x
5

1

s

›(sU)

›s
1s

›

›s

�
U

s

�
cos2u2s

›

›s

�
V

s

�
sin2u ,

(A9)

2
›y

›y
5

1

s

›(sU)

›s
2s

›

›s

�
U

s

�
cos2u1s

›

›s

�
V

s

�
sin2u ,

(A10)

2
›y

›x
5

1

s

›(sV)

›s
1s

›

›s

�
V

s

�
cos2u1s

›

›s

�
U

s

�
sin2u ,

(A11)

22
›u

›y
5

1

s

›(sV)

›s
2s

›

›s

�
V

s

�
cos2u2s

›

›s

�
U

s

�
sin2u ,

(A12)

where here ›u/›x is the Doppler (observed) diver-

gence, ›y/›y is the unobserved divergence, ›y/›x is the

unobserved vorticity, and 2›u/›y is the Doppler

vorticity. The circulation around (areal expansion

rate) of a cell is the mean cell Doppler vorticity (di-

vergence) times the cell area, which is practically

constant near a flow axis far from the radar. The terms

in 2u in (A12) and (A9) give rise to spurious quad-

rupole patterns in the fields of cell circulations and

cell expansion rates, respectively. Only in a flow

U52cs, V5Vs in solid-body rotation with constant

convergence 2c and vorticity 2V are the quadrupoles

entirely absent.
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Doviak, R. A., and D. S. Zrnić, 1993: Doppler Radar and Weather

Observations. 2nd ed. Academic Press, 562 pp.

Golden, J. H., and D. Purcell, 1978a: Airflow characteristics

around the Union City tornado. Mon. Wea. Rev., 106, 22–28,

https://doi.org/10.1175/1520-0493(1978)106,0022:ACATUC.
2.0.CO;2.

——, and ——, 1978b: Life cycle of the Union City, Oklahoma

tornado and comparison with waterspouts. Mon. Wea. Rev.,

106, 3–11, https://doi.org/10.1175/1520-0493(1978)106,0003:

LCOTUC.2.0.CO;2.

Kuster, C. M., P. L. Heinselman, andM. Austin, 2015: 31May 2013

El Reno tornadoes: Advantages of rapid-scan phased-array

radar data from a warning forecaster’s perspective. Wea.

Forecasting, 30, 933–956, https://doi.org/10.1175/WAF-D-

14-00142.1.

Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm

evolution and mesocyclone structure as related to tornado-

genesis. Mon. Wea. Rev., 107, 1184–1197, https://doi.org/

10.1175/1520-0493(1979)107,1184:STEAMS.2.0.CO;2.

——, D. W. Burgess, and R. A. Brown, 1978: Tornadic storm air-

flow and morphology derived from single-Doppler radar

measurements. Mon. Wea. Rev., 106, 48–61, https://doi.org/

10.1175/1520-0493(1978)106,0048:TSAAMD.2.0.CO;2.

Mahalik, M. C., B. R. Smith, K. L. Elmore, D. M. Kingfield, K. L.

Ortega, and T. M. Smith, 2019: Estimates of gradients in radar

moments using a linear least squares derivative technique.

Wea. Forecasting, 34, 415–434, https://doi.org/10.1175/WAF-

D-18-0095.1.

Margenau, H., and G. M. Murphy, 1956: The Mathematics of

Physics and Chemistry. 2nd ed. Van Nostrand, 604 pp.

Mitchell, E. D., S. V. Vasiloff, G. J. Stumpf, A. Witt, M. D. Eilts,

J. T. Johnson, and K. W. Thomas, 1998: The National Severe

StormsLaboratory tornadodetectionalgorithm.Wea.Forecasting,

13, 352–366, https://doi.org/10.1175/1520-0434(1998)013,0352:

TNSSLT.2.0.CO;2.

Petterssen, S., 1956: Motion and Motion Systems. Vol. I, Weather

Analysis and Forecasting, McGraw-Hill, 428 pp.

Rott, N., 1958: On the viscous core of a line vortex. Z. Angew.

Math. Phys., 9, 543–553, https://doi.org/10.1007/BF02424773.

Seimon, A., J. T. Allen, T. A. Seimon, S. J. Talbot, and D. K.

Hoadley, 2016: Crowdsourcing the El Reno 2013 tornado: A

new approach for collation and display of storm chaser im-

agery for scientific applications. Bull. Amer. Meteor. Soc., 97,

2069–2084, https://doi.org/10.1175/BAMS-D-15-00174.1.

Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson,

M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The

National Severe Storms Laboratory mesocyclone detection

algorithm for the WSR-88D. Wea. Forecasting, 13, 304–326,

https://doi.org/10.1175/1520-0434(1998)013,0304:TNSSLM.
2.0.CO;2.

Trapp, R. J., 2000: A clarification of vortex breakdown and tor-

nadogenesis. Mon. Wea. Rev., 128, 888–895, https://doi.org/

10.1175/1520-0493(2000)128,0888:ACOVBA.2.0.CO;2.

Wakimoto, R. M., and Coauthors, 2016: Aerial damage survey of

the 2013 El Reno tornado combined with mobile radar data.

Mon. Wea. Rev., 144, 1749–1776, https://doi.org/10.1175/

MWR-D-15-0367.1.

Ward, N. B., 1972: The exploration of certain features of tornado

dynamics using a laboratory model. J. Atmos. Sci., 29, 1194–1204,

https://doi.org/10.1175/1520-0469(1972)029,1194:TEOCFO.
2.0.CO;2.

Wood, V. T., and R. A. Brown, 1997: Effects of radar sampling on

single-Doppler velocity signatures of mesocyclones and tor-

nadoes.Wea. Forecasting, 12, 928–938, https://doi.org/10.1175/

1520-0434(1997)012,0928:EORSOS.2.0.CO;2.

Wurman, J., K. Kosiba, P. Robinson, and T. Marshall, 2014: The

roleofmultiple-vortex tornado structure in causing stormresearcher

fatalities.Bull.Amer.Meteor. Soc., 95, 31–45, https://doi.org/10.1175/

BAMS-D-13-00221.1.

Xu, Q., L. Wei, and K. Nai, 2017: A three-step method for esti-

mating vortex center locations in four-dimensional space from

radar-observed tornadicmesocyclones. J.Atmos.OceanicTechnol.,

34, 2275–2281, https://doi.org/10.1175/JTECH-D-17-0123.1.

JUNE 2020 DAV IE S - JONE S ET AL . 1133

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/37/6/1117/4961405/jtechd190116.pdf by N
O

AA C
entral Library user on 11 August 2020

https://doi.org/10.1175/WAF-D-14-00152.1
https://doi.org/10.1175/WAF-D-14-00152.1
https://doi.org/10.1175/MWR-D-18-0338.1
https://doi.org/10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2
https://doi.org/10.1175/1520-0426(2002)019<1759:ITDUSA>2.0.CO;2
https://doi.org/10.1175/1520-0426(2002)019<1759:ITDUSA>2.0.CO;2
https://doi.org/10.1175/1520-0493(1993)121<0713:UFFCDV>2.0.CO;2
https://doi.org/10.1175/1520-0493(1993)121<0713:UFFCDV>2.0.CO;2
https://doi.org/10.1175/2007JAS2516.1
https://doi.org/10.1175/JTECH1903.1
https://doi.org/10.1175/1520-0493(1978)106<0012:IOSMAD>2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106<0012:IOSMAD>2.0.CO;2
https://doi.org/10.1175/MWR-D-18-0356.1
https://doi.org/10.1175/1520-0434(1990)005<0247:IOTWBD>2.0.CO;2
https://doi.org/10.1175/1520-0434(1990)005<0247:IOTWBD>2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106<0022:ACATUC>2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106<0022:ACATUC>2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106<0003:LCOTUC>2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106<0003:LCOTUC>2.0.CO;2
https://doi.org/10.1175/WAF-D-14-00142.1
https://doi.org/10.1175/WAF-D-14-00142.1
https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106<0048:TSAAMD>2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106<0048:TSAAMD>2.0.CO;2
https://doi.org/10.1175/WAF-D-18-0095.1
https://doi.org/10.1175/WAF-D-18-0095.1
https://doi.org/10.1175/1520-0434(1998)013<0352:TNSSLT>2.0.CO;2
https://doi.org/10.1175/1520-0434(1998)013<0352:TNSSLT>2.0.CO;2
https://doi.org/10.1007/BF02424773
https://doi.org/10.1175/BAMS-D-15-00174.1
https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2
https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<0888:ACOVBA>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<0888:ACOVBA>2.0.CO;2
https://doi.org/10.1175/MWR-D-15-0367.1
https://doi.org/10.1175/MWR-D-15-0367.1
https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2
https://doi.org/10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2
https://doi.org/10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2
https://doi.org/10.1175/BAMS-D-13-00221.1
https://doi.org/10.1175/BAMS-D-13-00221.1
https://doi.org/10.1175/JTECH-D-17-0123.1

